Sign Language Classification With Pytorch 94

6 min read.

Data Info

the dataset is saved as a csv containing pixel values for 784 pixels resulting in images of size 28 _ 28 _ 1 with one color channel.

!pip -q install torchsummary
# imports
import string
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torch.utils.data import DataLoader, Dataset
from torchvision.utils import make_grid
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
from torchsummary import summary
from tqdm import tqdm

# some settings
# set background color to white
matplotlib.rcParams['figure.facecolor'] = '#ffffff'

# set default figure size
matplotlib.rcParams['figure.figsize'] = (15, 7)
# read data
train_df = pd.read_csv("../input/sign-language-mnist/sign_mnist_train/sign_mnist_train.csv")
test_df = pd.read_csv("../input/sign-language-mnist/sign_mnist_test/sign_mnist_test.csv")

each row in the data represents an image with the first column being the label for the image

# checkout data
train_df.head()
label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782 pixel783 pixel784
0 3 107 118 127 134 139 143 146 150 153 ... 207 207 207 207 206 206 206 204 203 202
1 6 155 157 156 156 156 157 156 158 158 ... 69 149 128 87 94 163 175 103 135 149
2 2 187 188 188 187 187 186 187 188 187 ... 202 201 200 199 198 199 198 195 194 195
3 2 211 211 212 212 211 210 211 210 210 ... 235 234 233 231 230 226 225 222 229 163
4 13 164 167 170 172 176 179 180 184 185 ... 92 105 105 108 133 163 157 163 164 179

5 rows × 785 columns

train_df.describe()
label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782 pixel783 pixel784
count 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 ... 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000 27455.000000
mean 12.318813 145.419377 148.500273 151.247714 153.546531 156.210891 158.411255 160.472154 162.339683 163.954799 ... 141.104863 147.495611 153.325806 159.125332 161.969259 162.736696 162.906137 161.966454 161.137898 159.824731
std 7.287552 41.358555 39.942152 39.056286 38.595247 37.111165 36.125579 35.016392 33.661998 32.651607 ... 63.751194 65.512894 64.427412 63.708507 63.738316 63.444008 63.509210 63.298721 63.610415 64.396846
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 6.000000 121.000000 126.000000 130.000000 133.000000 137.000000 140.000000 142.000000 144.000000 146.000000 ... 92.000000 96.000000 103.000000 112.000000 120.000000 125.000000 128.000000 128.000000 128.000000 125.500000
50% 13.000000 150.000000 153.000000 156.000000 158.000000 160.000000 162.000000 164.000000 165.000000 166.000000 ... 144.000000 162.000000 172.000000 180.000000 183.000000 184.000000 184.000000 182.000000 182.000000 182.000000
75% 19.000000 174.000000 176.000000 178.000000 179.000000 181.000000 182.000000 183.000000 184.000000 185.000000 ... 196.000000 202.000000 205.000000 207.000000 208.000000 207.000000 207.000000 206.000000 204.000000 204.000000
max 24.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 ... 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000 255.000000

8 rows × 785 columns

train_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27455 entries, 0 to 27454
Columns: 785 entries, label to pixel784
dtypes: int64(785)
memory usage: 164.4 MB
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7172 entries, 0 to 7171
Columns: 785 entries, label to pixel784
dtypes: int64(785)
memory usage: 43.0 MB
# create a dictionary for mapping numbers to letters
alpha_dict = {idx:letter for idx, letter in enumerate(string.ascii_lowercase)}
alpha_dict
{0: 'a',
 1: 'b',
 2: 'c',
 3: 'd',
 4: 'e',
 5: 'f',
 6: 'g',
 7: 'h',
 8: 'i',
 9: 'j',
 10: 'k',
 11: 'l',
 12: 'm',
 13: 'n',
 14: 'o',
 15: 'p',
 16: 'q',
 17: 'r',
 18: 's',
 19: 't',
 20: 'u',
 21: 'v',
 22: 'w',
 23: 'x',
 24: 'y',
 25: 'z'}
# check class distribution
# convert to actual letters using dict
alpha_labels = train_df.label.apply(lambda x: alpha_dict[x])
sns.countplot(x=alpha_labels)
plt.show()

png

# create custom pytorch dataset class
class SignDataset(Dataset) :
    def __init__(self, img, label) :
        self.classes = np.array(label)
        img = img / 255.0
        self.img = np.array(img).reshape(-1, 28, 28, 1)

        self.transform = T.Compose([
            T.ToTensor()
        ])

    def __len__(self) :
        return len(self.img)

    def __getitem__(self, index) :
        label = self.classes[index]
        img = self.img[index]
        img = self.transform(img)

        label = torch.LongTensor([label])
        img = img.float()

        return img, label
# create datasets
train_set = SignDataset(train_df.drop('label', axis=1), train_df['label'])
test_set = SignDataset(test_df.drop('label', axis=1), test_df['label'])
# show a single image
def show_image(img, label, dataset):
    plt.imshow(img.permute(1, 2, 0))
    plt.axis('off')
    plt.title(f"Label: {dataset.classes[label]}\nAlpha Label: {alpha_dict[dataset.classes[label]]}")
show_image(*train_set[4], train_set)

png

show_image(*train_set[45], train_set)

png

batch_size = 128
train_dl = DataLoader(train_set, batch_size=batch_size)
test_dl = DataLoader(test_set, batch_size=batch_size)
# visualize a batch of images
def show_batch(dl):
    for images, labels in dl:
        fig, ax = plt.subplots(figsize=(20, 8))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0))
        break
# show a batch of images (128 images)
show_batch(train_dl)

png

# convlutional block with batchnorm, max pooling and dropout
def conv_block(in_channels, out_channels, pool=False, drop=False):
    layers = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
              nn.BatchNorm2d(out_channels),
              nn.ReLU(inplace=True)]
    if pool: layers.append(nn.MaxPool2d(2))
    if drop: layers.append(nn.Dropout())
    return nn.Sequential(*layers)
# network architecture
class SignConvNet(nn.Module):
    def __init__(self, in_channels, out_classes):
        super().__init__()
        self.conv1 = conv_block(in_channels, 16)
        self.conv2 = conv_block(16, 32, pool=True)
        self.conv3 = conv_block(32, 64, pool=True, drop=True)
        self.fc =  nn.Sequential(*[
                        nn.Flatten(),
                        nn.Linear(7 * 7 * 64, out_classes)
                    ])

    def forward(self, img):
        img = self.conv1(img)
        img = self.conv2(img)
        img = self.conv3(img)
        return self.fc(img)
# get number of classes
num_classes = len(alpha_dict)

# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# create model, optim  and loss
model = SignConvNet(1, num_classes).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optim = torch.optim.Adam(model.parameters(), lr=1e-3)

# checkout model layer output shapes, and memory usage
summary(model, (1, 28, 28))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 16, 28, 28]             160
       BatchNorm2d-2           [-1, 16, 28, 28]              32
              ReLU-3           [-1, 16, 28, 28]               0
            Conv2d-4           [-1, 32, 28, 28]           4,640
       BatchNorm2d-5           [-1, 32, 28, 28]              64
              ReLU-6           [-1, 32, 28, 28]               0
         MaxPool2d-7           [-1, 32, 14, 14]               0
            Conv2d-8           [-1, 64, 14, 14]          18,496
       BatchNorm2d-9           [-1, 64, 14, 14]             128
             ReLU-10           [-1, 64, 14, 14]               0
        MaxPool2d-11             [-1, 64, 7, 7]               0
          Dropout-12             [-1, 64, 7, 7]               0
          Flatten-13                 [-1, 3136]               0
           Linear-14                   [-1, 26]          81,562
================================================================
Total params: 105,082
Trainable params: 105,082
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 1.27
Params size (MB): 0.40
Estimated Total Size (MB): 1.67
----------------------------------------------------------------
epochs = 10
losses = []
for epoch in range(epochs):
    # for custom progress bar
    with tqdm(train_dl, unit="batch") as tepoch:
        epoch_loss = 0
        epoch_acc = 0
        for data, target in tepoch:
            tepoch.set_description(f"Epoch {epoch + 1}")
            data, target = data.to(device), target.to(device) # move input to GPU
            out = model(data)
            loss = criterion(out, target.squeeze())
            epoch_loss += loss.item()
            loss.backward()
            optim.step()
            optim.zero_grad()
            tepoch.set_postfix(loss = loss.item()) # show loss and per batch of data
    losses.append(epoch_loss)
Epoch 1: 100%|██████████| 215/215 [00:02<00:00, 81.52batch/s, loss=0.00943]
Epoch 2: 100%|██████████| 215/215 [00:02<00:00, 81.32batch/s, loss=0.00608]
Epoch 3: 100%|██████████| 215/215 [00:03<00:00, 62.13batch/s, loss=0.00424]
Epoch 4: 100%|██████████| 215/215 [00:02<00:00, 80.00batch/s, loss=0.0211]
Epoch 5: 100%|██████████| 215/215 [00:02<00:00, 81.77batch/s, loss=0.00428]
Epoch 6: 100%|██████████| 215/215 [00:02<00:00, 81.05batch/s, loss=0.00279]
Epoch 7: 100%|██████████| 215/215 [00:02<00:00, 75.95batch/s, loss=0.0431]
Epoch 8: 100%|██████████| 215/215 [00:02<00:00, 80.23batch/s, loss=0.00375]
Epoch 9: 100%|██████████| 215/215 [00:02<00:00, 80.76batch/s, loss=0.000472]
Epoch 10: 100%|██████████| 215/215 [00:02<00:00, 80.97batch/s, loss=0.00668]
# plot losses
sns.set_style("dark")
sns.lineplot(data=losses).set(title="loss change during training", xlabel="epoch", ylabel="loss")
plt.show()

png

# predict on testing data samples (the accuracy here is batch accuracy)
y_pred_list = []
y_true_list = []
with torch.no_grad():
    with tqdm(test_dl, unit="batch") as tepoch:
        for inp, labels in tepoch:
            inp, labels = inp.to(device), labels.to(device)
            y_test_pred = model(inp)
            _, y_pred_tag = torch.max(y_test_pred, dim = 1)
            y_pred_list.append(y_pred_tag.cpu().numpy())
            y_true_list.append(labels.cpu().numpy())
100%|██████████| 57/57 [00:00<00:00, 180.71batch/s]
# flatten prediction and true lists
flat_pred = []
flat_true = []
for i in range(len(y_pred_list)):
    for j in range(len(y_pred_list[i])):
        flat_pred.append(y_pred_list[i][j])
        flat_true.append(y_true_list[i][j])

print(f"number of testing samples results: {len(flat_pred)}")
number of testing samples results: 7172
# calculate total testing accuracy
print(f"Testing accuracy is: {accuracy_score(flat_true, flat_pred) * 100:.2f}%")
Testing accuracy is: 94.19%
# Display 15 random picture of the dataset with their labels
inds = np.random.randint(len(test_set), size=15)
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 7),
                        subplot_kw={'xticks': [], 'yticks': []})

for i, ax in zip(inds, axes.flat):
    img, label = test_set[i]
    ax.imshow(img.permute(1, 2, 0))
    dict_real = alpha_dict[test_set.classes[label]]
    dict_pred = alpha_dict[test_set.classes[flat_pred[i]]]
    ax.set_title(f"True: {test_set.classes[label]}, {dict_real}\nPredicted: {test_set.classes[flat_pred[i]]}, {dict_pred}")
plt.tight_layout()
plt.show()

png

# classification report
print(classification_report(flat_true, flat_pred))
              precision    recall  f1-score   support

           0       1.00      1.00      1.00       331
           1       1.00      0.92      0.96       432
           2       1.00      0.98      0.99       310
           3       0.94      0.97      0.95       245
           4       0.97      0.99      0.98       498
           5       0.88      1.00      0.93       247
           6       0.90      0.94      0.92       348
           7       0.91      0.93      0.92       436
           8       0.97      0.95      0.96       288
          10       0.94      0.93      0.94       331
          11       0.99      1.00      1.00       209
          12       0.91      0.94      0.92       394
          13       0.88      0.81      0.84       291
          14       1.00      0.98      0.99       246
          15       0.95      1.00      0.98       347
          16       0.97      0.99      0.98       164
          17       0.82      0.86      0.84       144
          18       0.97      0.93      0.95       246
          19       0.87      0.80      0.84       248
          20       0.99      0.89      0.94       266
          21       0.94      0.91      0.93       346
          22       0.83      0.96      0.89       206
          23       0.90      0.96      0.93       267
          24       0.97      0.92      0.95       332

    accuracy                           0.94      7172
   macro avg       0.94      0.94      0.94      7172
weighted avg       0.94      0.94      0.94      7172
# plot confusion matrix
confusion_matrix_df = pd.DataFrame(confusion_matrix(flat_true, flat_pred)).rename(columns=alpha_dict, index=alpha_dict)
plt.figure(figsize=(20, 10))
sns.heatmap(confusion_matrix_df, annot=True, fmt='').set(title="confusion matrix", xlabel="Predicted Label", ylabel="True Label")
plt.show()

png

You might also like